Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Clin Med ; 12(8)2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2293511

ABSTRACT

Purpose: COVID-19 presents complex pathophysiology, and evidence collected points towards an intricate interaction between viral-dependent and individual immunological mechanisms. Identifying phenotypes through clinical and biological markers may provide a better understanding of the subjacent mechanisms and an early patient-tailored characterization of illness severity. Methods: A multicenter prospective cohort study was performed in 5 hospitals in Portugal and Brazil for one year between 2020-2021. All adult patients with an Intensive Care Unit admission with SARS-CoV-2 pneumonia were eligible. COVID-19 was diagnosed using clinical and radiologic criteria with a SARS-CoV-2 positive RT-PCR test. A two-step hierarchical cluster analysis was made using several class-defining variables. Results: 814 patients were included. The cluster analysis revealed a three-class model, allowing for the definition of three distinct COVID-19 phenotypes: 407 patients in phenotype A, 244 patients in phenotype B, and 163 patients in phenotype C. Patients included in phenotype A were significantly older, with higher baseline inflammatory biomarkers profile, and a significantly higher requirement of organ support and mortality rate. Phenotypes B and C demonstrated some overlapping clinical characteristics but different outcomes. Phenotype C patients presented a lower mortality rate, with consistently lower C-reactive protein, but higher procalcitonin and interleukin-6 serum levels, describing an immunological profile significantly different from phenotype B. Conclusions: Severe COVID-19 patients exhibit three different clinical phenotypes with distinct profiles and outcomes. Their identification could have an impact on patients' care, justifying different therapy responses and inconsistencies identified across different randomized control trial results.

2.
Rev Bras Ter Intensiva ; 34(4): 433-442, 2022.
Article in Portuguese, English | MEDLINE | ID: covidwho-2276149

ABSTRACT

OBJECTIVE: To analyze and compare COVID-19 patient characteristics, clinical management and outcomes between the peak and plateau periods of the first pandemic wave in Portugal. METHODS: This was a multicentric ambispective cohort study including consecutive severe COVID-19 patients between March and August 2020 from 16 Portuguese intensive care units. The peak and plateau periods, respectively, weeks 10 - 16 and 17 - 34, were defined. RESULTS: Five hundred forty-one adult patients with a median age of 65 [57 - 74] years, mostly male (71.2%), were included. There were no significant differences in median age (p = 0.3), Simplified Acute Physiology Score II (40 versus 39; p = 0.8), partial arterial oxygen pressure/fraction of inspired oxygen ratio (139 versus 136; p = 0.6), antibiotic therapy (57% versus 64%; p = 0.2) at admission, or 28-day mortality (24.4% versus 22.8%; p = 0.7) between the peak and plateau periods. During the peak period, patients had fewer comorbidities (1 [0 - 3] versus 2 [0 - 5]; p = 0.002) and presented a higher use of vasopressors (47% versus 36%; p < 0.001) and invasive mechanical ventilation (58.1 versus 49.2%; p < 0.001) at admission, prone positioning (45% versus 36%; p = 0.04), and hydroxychloroquine (59% versus 10%; p < 0.001) and lopinavir/ritonavir (41% versus 10%; p < 0.001) prescriptions. However, a greater use of high-flow nasal cannulas (5% versus 16%, p < 0.001) on admission, remdesivir (0.3% versus 15%; p < 0.001) and corticosteroid (29% versus 52%, p < 0.001) therapy, and a shorter ICU length of stay (12 days versus 8, p < 0.001) were observed during the plateau. CONCLUSION: There were significant changes in patient comorbidities, intensive care unit therapies and length of stay between the peak and plateau periods of the first COVID-19 wave.


OBJETIVO: Analisar e comparar as características de pacientes críticos com a COVID-19, a abordagem clínica e os resultados entre os períodos de pico e de platô na primeira onda pandêmica em Portugal. MÉTODOS: Este foi um estudo de coorte multicêntrico ambispectivo, que incluiu pacientes consecutivos com a forma grave da COVID-19 entre março e agosto de 2020 de 16 unidades de terapia intensiva portuguesas. Definiram-se as semanas 10 - 16 e 17 - 34 como os períodos de pico e platô. RESULTADOS: Incluíram-se 541 pacientes adultos com mediana de idade de 65 [57 - 74] anos, a maioria do sexo masculino (71,2%). Não houve diferenças significativas na mediana de idade (p = 0,3), no Simplified Acute Physiology Score II (40 versus 39; p = 0,8), na pressão parcial de oxigênio/fração inspirada de oxigênio (139 versus 136; p = 0,6), na terapia com antibióticos na admissão (57% versus 64%; p = 0,2) ou na mortalidade aos 28 dias (24,4% versus 22,8%; p = 0,7) entre o período de pico e platô. Durante o período de pico, os pacientes tiveram menos comorbidades (1 [0 - 3] versus 2 [0 - 5]; p = 0,002); fizeram mais uso de vasopressores (47% versus 36%; p < 0,001) e ventilação mecânica invasiva na admissão (58,1% versus 49,2%; p < 0,001), e tiveram mais prescrição de hidroxicloroquina (59% versus 10%; p < 0,001), lopinavir/ritonavir (41% versus 10%; p < 0,001) e posição prona (45% versus 36%; p = 0,04). Entretanto, durante o platô, observou-se maior uso de cânulas nasais de alto fluxo (5% versus 16%; p < 0,001) na admissão, remdesivir (0,3% versus 15%; p < 0,001) e corticosteroides (29% versus 52%; p < 0,001), além de menor tempo de internação na unidade de terapia intensiva (12 versus 8 dias; p < 0,001). CONCLUSÃO: Houve mudanças significativas nas comorbidades dos pacientes, nos tratamentos da unidade de terapia intensiva e no tempo de internação entre os períodos de pico e platô na primeira onda da COVID-19.


Subject(s)
COVID-19 , Adult , Humans , Male , Middle Aged , Aged , Female , COVID-19/therapy , Pandemics , Portugal/epidemiology , Cohort Studies , Critical Care , Intensive Care Units , Oxygen
3.
Sci Rep ; 13(1): 4482, 2023 03 18.
Article in English | MEDLINE | ID: covidwho-2255371

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a pandemic infection caused by the newly discovered severe acute respiratory syndrome coronavirus 2. Remdesivir (RDV) and corticosteroids are used mainly in COVID-19 patients with acute respiratory failure. The main objective of the study was to assess the effectiveness of remdesivir with and without corticosteroids in the treatment of COVID-19 patients. We conducted a prospective observational study, including adult patients consecutively hospitalized with confirmed COVID-19 and acute respiratory failure. Patients were divided according to treatment strategy: RDV alone versus RDV with corticosteroids. The primary outcome was the time to recovery in both treatment groups. We included 374 COVID-19 adult patients, 184 were treated with RDV, and 190 were treated with RDV and corticosteroid. Patients in the RDV group had a shorter time to recovery in comparison with patients in the RDV plus corticosteroids group at 28 days after admission [11 vs. 16 days (95% confidence Interval 9.7-12.8; 14.9-17.1; p = .016)]. Patients treated with RDV alone had a shorter length of hospital stay. The use of corticosteroids as adjunctive therapy of RDV was not associated with improvement in mortality of COVID-19 patients.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Humans , COVID-19 Drug Treatment , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Antiviral Agents/therapeutic use , Respiratory Insufficiency/chemically induced
5.
J Clin Med ; 11(22)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2116118

ABSTRACT

The ongoing chronic use of hydroxychloroquine or chloroquine (HCQ/CQ) in rheumatic patients might impact their outcomes after a SARS-CoV-2 infection. Therefore, we sought to assess the mortality in rheumatic patients with chronic HCQ/CQ use who developed a COVID-19 infection through a comparison between individuals chronically using HCQ/CQ with those not taking these drugs. We performed a systematic review and meta-analysis of studies on PubMed, Embase, and Cochrane Central. We included full-length reports, prospective observational cohorts, and clinical trials of adult patients (aged ≥ 18 years) who were diagnosed with a COVID-19 infection. Case studies, case series, letters, comments, and editorials were excluded. The main outcome was all-cause mortality. This study is registered with PROSPERO (CRD42022341678). We identified 541 studies, of which 20 studies were included, comprising 236,997 patients. All-cause mortality was significantly lower in patients with prior chronic use of HCQ/CQ compared to those with no previous usage (OR 0.76; 95% CI 0.62-0.94; p = 0.01). There was a considerably lower incidence of hospitalization among patients with chronic HCQ/CQ use compared to their counterparts without HCQ/CQ usage (OR 0.80; 95% CI 0.65-0.99; p = 0.04). All-cause mortality and hospitalization were significantly lower in rheumatic patients with chronic HCQ/CQ use who developed a COVID-19 infection.

7.
Crit Care ; 26(1): 292, 2022 09 27.
Article in English | MEDLINE | ID: covidwho-2053944

ABSTRACT

BACKGROUND: Ventilator-associated pneumonia (VAP) is common in patients with severe SARS-CoV-2 pneumonia. The aim of this ancillary analysis of the coVAPid multicenter observational retrospective study is to assess the relationship between adjuvant corticosteroid use and the incidence of VAP. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort in 36 ICUs. Adult patients receiving invasive mechanical ventilation for more than 48 h for SARS-CoV-2 pneumonia were consecutively included between February and May 2020. VAP diagnosis required strict definition with clinical, radiological and quantitative microbiological confirmation. We assessed the association of VAP with corticosteroid treatment using univariate and multivariate cause-specific Cox's proportional hazard models with adjustment on pre-specified confounders. RESULTS: Among the 545 included patients, 191 (35%) received corticosteroids. The proportional hazard assumption for the effect of corticosteroids on the incidence of VAP could not be accepted, indicating that this effect varied during ICU stay. We found a non-significant lower risk of VAP for corticosteroid-treated patients during the first days in the ICU and an increased risk for longer ICU stay. By modeling the effect of corticosteroids with time-dependent coefficients, the association between corticosteroids and the incidence of VAP was not significant (overall effect p = 0.082), with time-dependent hazard ratios (95% confidence interval) of 0.47 (0.17-1.31) at day 2, 0.95 (0.63-1.42) at day 7, 1.48 (1.01-2.16) at day 14 and 1.94 (1.09-3.46) at day 21. CONCLUSIONS: No significant association was found between adjuvant corticosteroid treatment and the incidence of VAP, although a time-varying effect of corticosteroids was identified along the 28-day follow-up.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Adult , COVID-19/complications , COVID-19/epidemiology , Humans , Incidence , Intensive Care Units , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/etiology , Respiration, Artificial/adverse effects , Retrospective Studies , SARS-CoV-2
8.
World J Crit Care Med ; 11(4): 246-254, 2022 Jul 09.
Article in English | MEDLINE | ID: covidwho-2025161

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) can be associated with life-threatening organ dysfunction due to septic shock, frequently requiring intensive care unit (ICU) admission, respiratory and vasopressor support. Therefore, clear clinical criteria are pivotal for early recognition of patients more likely to need prompt organ support. Although most patients with severe COVID-19 meet the Sepsis-3.0 criteria for septic shock, it has been increasingly recognized that hyperlactatemia is frequently absent, possibly leading to an underestimation of illness severity and mortality risk. AIM: To identify the proportion of severe COVID-19 patients with vasopressor support requirements, with and without hyperlactatemia, and describe their clinical outcomes and mortality. METHODS: We performed a single-center prospective cohort study. All adult patients admitted to the ICU with COVID-19 were included in the analysis and were further divided into three groups: Sepsis group, without both criteria; Vasoplegic Shock group, with persistent hypotension and vasopressor support without hyperlactatemia; and Septic Shock 3.0 group, with both criteria. COVID-19 was diagnosed using clinical and radiologic criteria with a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive RT-PCR test. RESULTS: 118 patients (mean age 63 years, 87% males) were included in the analysis (n = 51 Sepsis group, n = 26 Vasoplegic Shock group, and n = 41 Septic Shock 3.0 group). SOFA score at ICU admission and ICU length of stay were different between the groups (P < 0.001). Mortality was significantly higher in the Vasoplegic Shock and Septic Shock 3.0 groups when compared with the Sepsis group (P < 0.001) without a significant difference between the former two groups (P = 0.713). The log rank tests of Kaplan-Meier survival curves were also different (P = 0.007). Ventilator-free days and vasopressor-free days were different between the Sepsis vs Vasoplegic Shock and Septic Shock 3.0 groups (both P < 0.001), and similar in the last two groups (P = 0.128 and P = 0.133, respectively). Logistic regression identified the maximum dose of vasopressor therapy used (AOR 1.046; 95%CI: 1.012-1.082, P = 0.008) and serum lactate level (AOR 1.542; 95%CI: 1.055-2.255, P = 0.02) as the major explanatory variables of mortality rates (R 2 0.79). CONCLUSION: In severe COVID-19 patients, the Sepsis 3.0 criteria of septic shock may exclude approximately one third of patients with a similarly high risk of a poor outcome and mortality rate, which should be equally addressed.

9.
Crit Care ; 26(1): 236, 2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-2002213

ABSTRACT

BACKGROUND: The COVID-19 pandemic presented major challenges for critical care facilities worldwide. Infections which develop alongside or subsequent to viral pneumonitis are a challenge under sporadic and pandemic conditions; however, data have suggested that patterns of these differ between COVID-19 and other viral pneumonitides. This secondary analysis aimed to explore patterns of co-infection and intensive care unit-acquired infections (ICU-AI) and the relationship to use of corticosteroids in a large, international cohort of critically ill COVID-19 patients. METHODS: This is a multicenter, international, observational study, including adult patients with PCR-confirmed COVID-19 diagnosis admitted to ICUs at the peak of wave one of COVID-19 (February 15th to May 15th, 2020). Data collected included investigator-assessed co-infection at ICU admission, infection acquired in ICU, infection with multi-drug resistant organisms (MDRO) and antibiotic use. Frequencies were compared by Pearson's Chi-squared and continuous variables by Mann-Whitney U test. Propensity score matching for variables associated with ICU-acquired infection was undertaken using R library MatchIT using the "full" matching method. RESULTS: Data were available from 4994 patients. Bacterial co-infection at admission was detected in 716 patients (14%), whilst 85% of patients received antibiotics at that stage. ICU-AI developed in 2715 (54%). The most common ICU-AI was bacterial pneumonia (44% of infections), whilst 9% of patients developed fungal pneumonia; 25% of infections involved MDRO. Patients developing infections in ICU had greater antimicrobial exposure than those without such infections. Incident density (ICU-AI per 1000 ICU days) was in considerable excess of reports from pre-pandemic surveillance. Corticosteroid use was heterogenous between ICUs. In univariate analysis, 58% of patients receiving corticosteroids and 43% of those not receiving steroids developed ICU-AI. Adjusting for potential confounders in the propensity-matched cohort, 71% of patients receiving corticosteroids developed ICU-AI vs 52% of those not receiving corticosteroids. Duration of corticosteroid therapy was also associated with development of ICU-AI and infection with an MDRO. CONCLUSIONS: In patients with severe COVID-19 in the first wave, co-infection at admission to ICU was relatively rare but antibiotic use was in substantial excess to that indication. ICU-AI were common and were significantly associated with use of corticosteroids. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021).


Subject(s)
COVID-19 , Coinfection , Pneumonia, Bacterial , Pneumonia, Viral , Adrenal Cortex Hormones/therapeutic use , Adult , Anti-Bacterial Agents/therapeutic use , COVID-19/complications , COVID-19/epidemiology , COVID-19 Testing , Coinfection/drug therapy , Coinfection/epidemiology , Critical Illness , Humans , Intensive Care Units , Pandemics , Pneumonia, Bacterial/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology
10.
Sci Rep ; 12(1): 9622, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1947488

ABSTRACT

This network meta-analysis (NMA) assessed the efficacy of remdesivir in hospitalized patients with COVID-19 requiring supplemental oxygen. Randomized controlled trials of hospitalized patients with COVID-19, where patients were receiving supplemental oxygen at baseline and at least one arm received treatment with remdesivir, were identified. Outcomes included mortality, recovery, and no longer requiring supplemental oxygen. NMAs were performed for low-flow oxygen (LFO2); high-flow oxygen (HFO2), including NIV (non-invasive ventilation); or oxygen at any flow (AnyO2) at early (day 14/15) and late (day 28/29) time points. Six studies were included (N = 5245 patients) in the NMA. Remdesivir lowered early and late mortality among AnyO2 patients (risk ratio (RR) 0.52, 95% credible interval (CrI) 0.34-0.79; RR 0.81, 95%CrI 0.69-0.95) and LFO2 patients (RR 0.21, 95%CrI 0.09-0.46; RR 0.24, 95%CrI 0.11-0.48); no improvement was observed among HFO2 patients. Improved early and late recovery was observed among LFO2 patients (RR 1.22, 95%CrI 1.09-1.38; RR 1.17, 95%CrI 1.09-1.28). Remdesivir also lowered the requirement for oxygen support among all patient subgroups. Among hospitalized patients with COVID-19 requiring supplemental oxygen at baseline, use of remdesivir compared to best supportive care is likely to improve the risk of mortality, recovery and need for oxygen support in AnyO2 and LFO2 patients.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Humans , Oxygen/therapeutic use , Randomized Controlled Trials as Topic , Treatment Outcome
11.
Intensive Care Med ; 48(6): 690-705, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1899123

ABSTRACT

PURPOSE: To accommodate the unprecedented number of critically ill patients with pneumonia caused by coronavirus disease 2019 (COVID-19) expansion of the capacity of intensive care unit (ICU) to clinical areas not previously used for critical care was necessary. We describe the global burden of COVID-19 admissions and the clinical and organizational characteristics associated with outcomes in critically ill COVID-19 patients. METHODS: Multicenter, international, point prevalence study, including adult patients with SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) and a diagnosis of COVID-19 admitted to ICU between February 15th and May 15th, 2020. RESULTS: 4994 patients from 280 ICUs in 46 countries were included. Included ICUs increased their total capacity from 4931 to 7630 beds, deploying personnel from other areas. Overall, 1986 (39.8%) patients were admitted to surge capacity beds. Invasive ventilation at admission was present in 2325 (46.5%) patients and was required during ICU stay in 85.8% of patients. 60-day mortality was 33.9% (IQR across units: 20%-50%) and ICU mortality 32.7%. Older age, invasive mechanical ventilation, and acute kidney injury (AKI) were associated with increased mortality. These associations were also confirmed specifically in mechanically ventilated patients. Admission to surge capacity beds was not associated with mortality, even after controlling for other factors. CONCLUSIONS: ICUs responded to the increase in COVID-19 patients by increasing bed availability and staff, admitting up to 40% of patients in surge capacity beds. Although mortality in this population was high, admission to a surge capacity bed was not associated with increased mortality. Older age, invasive mechanical ventilation, and AKI were identified as the strongest predictors of mortality.


Subject(s)
Acute Kidney Injury , COVID-19 , Adult , Critical Illness , Humans , Intensive Care Units , Respiration, Artificial , SARS-CoV-2
12.
Intensive Crit Care Nurs ; 70: 103227, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1828574

ABSTRACT

Patients in intensive care units (ICUs) are at high risk for healthcare-acquired infections (HAI) due to the high prevalence of invasive procedures and devices, induced immunosuppression, comorbidity, frailty and increased age. Over the past decade we have seen a successful reduction in the incidence of HAI related to invasive procedures and devices. However, the rate of ICU-acquired infections remains high. Within this context, the ongoing emergence of new pathogens, further complicates treatment and threatens patient outcomes. Additionally, the SARS-CoV-2 (COVID-19) pandemic highlighted the challenge that an emerging pathogen provides in adapting prevention measures regarding both the risk of exposure to caregivers and the need to maintain quality of care. ICU nurses hold a special place in the prevention and management of HAI as they are involved in basic hygienic care, steering and implementing quality improvement initiatives, correct microbiological sampling, and aspects antibiotic stewardship. The emergence of more sensitive microbiological techniques and our increased knowledge about interactions between critically ill patients and their microbiota are leading us to rethink how we define HAIs and best strategies to diagnose, treat and prevent these infections in the ICU. This multidisciplinary expert review, focused on the ICU setting, will summarise the recent epidemiology of ICU-HAI, discuss the place of modern microbiological techniques in their diagnosis, review operational and epidemiological definitions and redefine the place of several controversial preventive measures including antimicrobial-impregnated medical devices, chlorhexidine-impregnated washcloths, catheter dressings and chlorhexidine-based mouthwashes. Finally, general guidance is suggested that may reduce HAI incidence and especially outbreaks in ICUs.


Subject(s)
COVID-19 , Catheter-Related Infections , Cross Infection , Adult , Chlorhexidine , Cross Infection/diagnosis , Cross Infection/epidemiology , Cross Infection/prevention & control , Delivery of Health Care , Humans , Intensive Care Units , SARS-CoV-2
14.
ERJ Open Res ; 8(1)2022 Jan.
Article in English | MEDLINE | ID: covidwho-1690978

ABSTRACT

Due to the large number of patients with severe coronavirus disease 2019 (COVID-19), many were treated outside the traditional walls of the intensive care unit (ICU), and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the International Severe Acute Respiratory and Emerging Infection Consortium World Health Organization COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or noninvasive mechanical ventilation, high-flow nasal cannula, inotropes or vasopressors. A logistic generalised additive model was used to compare clinical outcomes among patients admitted or not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median (interquartile range (IQR), 67 (55-78) years), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 (5-19) days and was longer in patients admitted to an ICU than in those who were cared for outside the ICU (12 (6-23) days versus 8 (4-15) days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% (5797 out of 18 831) versus 39.0% (7532 out of 19 295), p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR 0.70, 95% CI 0.65-0.75; p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside an ICU.

15.
Clin Appl Thromb Hemost ; 28: 10760296221079612, 2022.
Article in English | MEDLINE | ID: covidwho-1685921

ABSTRACT

BACKGROUND: COVID-19 is a new form of acute respiratory failure leading to multiorgan failure and ICU admission. Gathered evidence suggests that a 3-fold rise in D-dimer concentrations may be linked to poor prognosis and higher mortality. PURPOSE: To describe D-dimer admission profile in severe ICU COVID19 patients and its predictive role in outcomes and mortality. METHODS: Single-center retrospective cohort study. All adult patients admitted to ICU with COVID19 were divided into 3 groups: (1) Lower-values group (D-dimer levels < 3-fold normal range value [NRV] [500ng/mL]), Intermediate-values group (D-dimer ≥3-fold and <10-fold NRV) and Higher-value group (≥10-fold NRV). RESULTS: 118 patients (mean age 63 years, 73% males) were included (N = 73 Lower-values group, N = 31 Intermediate-values group; N = 11 Higher-values group). Mortality was not different between groups (p = 0.51). Kaplan-Meier survival curves revealed no differences (p = 0.52) between groups, nor it was verified even when gender, age, ICU length of stay, and SOFA score were considered as covariables. CONCLUSIONS: In severe COVID19 patients, the D-dimer profile does not retain a predictive value regarding patients' survivability and should not be used as a surrogate of disease severity.


Subject(s)
COVID-19/blood , Fibrin Fibrinogen Degradation Products/metabolism , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
16.
Ann Intensive Care ; 12(1): 9, 2022 Feb 04.
Article in English | MEDLINE | ID: covidwho-1673925

ABSTRACT

BACKGROUND: Since the publication of the 2018 Clinical Guidelines about sedation, analgesia, delirium, mobilization, and sleep deprivation in critically ill patients, no evaluation and adequacy assessment of these recommendations were studied in an international context. This survey aimed to investigate these current practices and if the COVID-19 pandemic has changed them. METHODS: This study was an open multinational electronic survey directed to physicians working in adult intensive care units (ICUs), which was performed in two steps: before and during the COVID-19 pandemic. RESULTS: We analyzed 1768 questionnaires and 1539 (87%) were complete. Before the COVID-19 pandemic, we received 1476 questionnaires and 292 were submitted later. The following practices were observed before the pandemic: the Visual Analog Scale (VAS) (61.5%), the Behavioral Pain Scale (BPS) (48.2%), the Richmond Agitation Sedation Scale (RASS) (76.6%), and the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) (66.6%) were the most frequently tools used to assess pain, sedation level, and delirium, respectively; midazolam and fentanyl were the most frequently used drugs for inducing sedation and analgesia (84.8% and 78.3%, respectively), whereas haloperidol (68.8%) and atypical antipsychotics (69.4%) were the most prescribed drugs for delirium treatment; some physicians regularly prescribed drugs to induce sleep (19.1%) or ordered mechanical restraints as part of their routine (6.2%) for patients on mechanical ventilation; non-pharmacological strategies were frequently applied for pain, delirium, and sleep deprivation management. During the COVID-19 pandemic, the intensive care specialty was independently associated with best practices. Moreover, the mechanical ventilation rate was higher, patients received sedation more often (94% versus 86.1%, p < 0.001) and sedation goals were discussed more frequently in daily rounds. Morphine was the main drug used for analgesia (77.2%), and some sedative drugs, such as midazolam, propofol, ketamine and quetiapine, were used more frequently. CONCLUSIONS: Most sedation, analgesia and delirium practices were comparable before and during the COVID-19 pandemic. During the pandemic, the intensive care specialty was a variable that was independently associated with the best practices. Although many findings are in accordance with evidence-based recommendations, some practices still need improvement.

17.
ERJ open research ; 2021.
Article in English | EuropePMC | ID: covidwho-1610380

ABSTRACT

Due to the large number of patients with severe COVID-19, many were treated outside of the traditional walls of the ICU, and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside of the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the ISARIC WHO COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or non-invasive mechanical ventilation, high-flow nasal cannula, inotropes, and vasopressors. A logistic Generalised Additive Model was used to compare clinical outcomes among patients admitted and not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median [IQR], 67 years [55, 78]), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 days (5–19) and was longer in patients admitted to an ICU than in those that were cared for outside of ICU (12 [6–23] versus 8 [4–15] days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% [5797/18831] versus 39.0% [7532/19295], p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR:0.70, 95%CI: 0.65-0.75, p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside of an ICU.

18.
J Ment Health ; 31(4): 524-533, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1604963

ABSTRACT

BACKGROUND: The coronavirus (COVID-19) pandemic has seen a global surge in anxiety, depression, post-traumatic stress disorder (PTSD), and stress. AIMS: This study aimed to describe the perspectives of patients with COVID-19, their family, health professionals, and the general public on the impact of COVID-19 on mental health. METHODS: A secondary thematic analysis was conducted using data from the COVID-19 COS project. We extracted data on the perceived causes and impact of COVID-19 on mental health from an international survey and seven online consensus workshops. RESULTS: We identified four themes (with subthemes in parenthesis): anxiety amidst uncertainty (always on high alert, ebb and flow of recovery); anguish of a threatened future (intense frustration of a changed normality, facing loss of livelihood, trauma of ventilation, a troubling prognosis, confronting death); bearing responsibility for transmission (fear of spreading COVID-19 in public; overwhelming guilt of infecting a loved one); and suffering in isolation (severe solitude of quarantine, sick and alone, separation exacerbating grief). CONCLUSION: We found that the unpredictability of COVID-19, the fear of long-term health consequences, burden of guilt, and suffering in isolation profoundly impacted mental health. Clinical and public health interventions are needed to manage the psychological consequences arising from this pandemic.


Subject(s)
COVID-19 , Anxiety/epidemiology , Anxiety/psychology , Depression/psychology , Family , Humans , Mental Health , SARS-CoV-2
19.
Front Chem ; 9: 685196, 2021.
Article in English | MEDLINE | ID: covidwho-1441098

ABSTRACT

COVID-19 is an infectious disease caused by Coronavirus 2 (SARS-CoV-2) that may lead to a severe acute respiratory syndrome. Such syndrome is thought to be related, at least in part, to a dysregulation of the immune system which involves three main components: hyperactivity of the innate immune system; decreased production of type 1 Interferons (IFN) by SARS-CoV-2-infected cells, namely respiratory epithelial cells and macrophages; and decreased numbers of both CD4+ and particularly CD8+ T cells. Herein, we describe how excessive activation of the innate immune system and the need for viral replication in several cells of the infected organism promote significant alterations in cells' energy metabolism (glucose metabolism), which may underlie the poor prognosis of the disease in severe situations. When activated, cells of the innate immune system reprogram their metabolism, and increase glucose uptake to ensure secretion of pro-inflammatory cytokines. Changes in glucose metabolism are also observed in pulmonary epithelial cells, contributing to dysregulation of cytokine synthesis and inflammation of the pulmonary epithelium. Controlling hyperglycolysis in critically ill patients may help to reduce the exaggerated production of pro-inflammatory cytokines and optimise the actions of the adaptive immune system. In this review, we suggest that the administration of non-toxic concentrations of 2-deoxy-D-glucose, the use of GLUT 1 inhibitors, of antioxidants such as vitamin C in high doses, as well as the administration of N-acetylcysteine in high doses, may be useful complementary therapeutic strategies for these patients, as suggested by some clinical trials and/ or reports. Overall, understanding changes in the glycolytic pathway associated with COVID-19 infection can help to find new forms of treatment for this disease.

20.
Am J Respir Crit Care Med ; 204(5): 546-556, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1416749

ABSTRACT

Rationale: Early empirical antimicrobial treatment is frequently prescribed to critically ill patients with coronavirus disease (COVID-19) based on Surviving Sepsis Campaign guidelines.Objectives: We aimed to determine the prevalence of early bacterial identification in intubated patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia, as compared with influenza pneumonia, and to characterize its microbiology and impact on outcomes.Methods: A multicenter retrospective European cohort was performed in 36 ICUs. All adult patients receiving invasive mechanical ventilation >48 hours were eligible if they had SARS-CoV-2 or influenza pneumonia at ICU admission. Bacterial identification was defined by a positive bacterial culture within 48 hours after intubation in endotracheal aspirates, BAL, blood cultures, or a positive pneumococcal or legionella urinary antigen test.Measurements and Main Results: A total of 1,050 patients were included (568 in SARS-CoV-2 and 482 in influenza groups). The prevalence of bacterial identification was significantly lower in patients with SARS-CoV-2 pneumonia compared with patients with influenza pneumonia (9.7 vs. 33.6%; unadjusted odds ratio, 0.21; 95% confidence interval [CI], 0.15-0.30; adjusted odds ratio, 0.23; 95% CI, 0.16-0.33; P < 0.0001). Gram-positive cocci were responsible for 58% and 72% of coinfection in patients with SARS-CoV-2 and influenza pneumonia, respectively. Bacterial identification was associated with increased adjusted hazard ratio for 28-day mortality in patients with SARS-CoV-2 pneumonia (1.57; 95% CI, 1.01-2.44; P = 0.043). However, no significant difference was found in the heterogeneity of outcomes related to bacterial identification between the two study groups, suggesting that the impact of coinfection on mortality was not different between patients with SARS-CoV-2 and influenza.Conclusions: Bacterial identification within 48 hours after intubation is significantly less frequent in patients with SARS-CoV-2 pneumonia than patients with influenza pneumonia.Clinical trial registered with www.clinicaltrials.gov (NCT04359693).


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Adult , COVID-19/complications , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL